Recombinant adenoviral microRNA-206 induces myogenesis in C2C12 cells

نویسندگان

  • Weiwei Zhang
  • Tao Wang
  • Yongping Su
  • Wang Li
  • Lynn T. Frame
  • Guoping Ai
چکیده

BACKGROUND The expression of microRNA-206 (miR-206) is high in skeletal muscle but low in most other tissues. The expression of miR-206 is increased in muscular dystrophy, suggesting its involvement in the pathogenesis of muscle diseases. To determine the role of miR-206 in muscle cell differentiation and explore a possible gene therapy vector, we constructed a miR-206 adenoviral expression vector (AdvmiR-206) and tested for transfection into C2C12 stem cells. MATERIAL/METHODS A 355-bp PCR amplicon from C57B6 mouse skeletal muscle genomic DNA was inserted into the adenoviral shuttle vector pAdTrack-CMV, which was then co-transformed with the adenoviral backbone plasmid pAdEasy-1 into competent E. coli BJ5183 bacteria. The specificity and function of this recombinant adenoviral MiR-206 were studied in C2C12 cells by Northern blot, immunofluorescence, Western blot, and flow cytometry. RESULTS Increased expression of miR-206 in AdvmiR-206 transfected C2C12 cells (P < 0.001) and resulted in morphological and biochemical changes over time that were similar to serum deprivation, including elongated cells and increased myosin heavy chain proteins. Even in the absence of serum deprivation, miR-206 overexpression accounted for a 50% reduction of S-phase cells (P < 0.01). Moreover, in untransfected C2C12 cells, the introduction of miR-206-specific antisense oligoribonucleotides inhibited the normal response to serum deprivation. Twenty-four hours after lipofection of antisense oligoribonucleotides, the number of elongated cells was reduced by half (P < 0.01). CONCLUSIONS Collectively, these data support a role for miR-206 in myoblast differentiation. We foresee potential applications for the AdvmiR-206 vector in research and therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation.

MicroRNAs are short non-coding RNAs involved in post-transcriptional regulation of multiple messenger RNA targets. The miR-1/miR-206 family is expressed during skeletal muscle differentiation and is an integral component of myogenesis. To better understand miR-1/miR-206 function during myoblast differentiation we identified novel target mRNAs by microarray and characterized their function in C2...

متن کامل

TIMP3: a physiological regulator of adult myogenesis.

Myogenic differentiation in adult muscle is normally suppressed and can be activated by myogenic cues in a subset of activated satellite cells. The switch mechanism that turns myogenesis on and off is not defined. In the present study, we demonstrate that tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of TNFalpha-converting enzyme (TACE), acts as an on-off switch for ...

متن کامل

01-P024 MicroRNA-206 regulates sonic hedgehog to control myogenesis

MicroRNAs (miRNAs) constitute of a class small non-coding RNAs that are involved in post-transcriptional gene regulation and have important regulatory roles in many fundamental biological processes. A small number of miRNAs predominantly expressed in muscle tissue have been found to play critical role in myogenesis, muscle growth, cardiac function and muscle hypertrophy. In the present study, t...

متن کامل

Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133.

The expression of three microRNAs, miR-1, miR-206 and miR-133 is restricted to skeletal myoblasts and cardiac tissue during embryo development and muscle cell differentiation, which suggests a regulation by muscle regulatory factors (MRFs). Here we show that inhibition of C2C12 muscle cell differentiation by FGFs, which interferes with the activity of MRFs, suppressed the expression of miR-1, m...

متن کامل

microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice.

Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle-specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011